Alternative pathways for editing non-cognate amino acids by aminoacyl- tRNA synthetases
نویسندگان
چکیده
Evidence is presented that the editing mechanisms of aminoacyl-tRNA synthetase operate by two alternative pathways: pre-transfer, by hydrolysis of the non-cognate aminoacyl adenylate; post-transfer, by hydrolysis of the mischarged tRNA. The methionyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus and isoleucyl-tRNA synthetase from E. coli, for example, are shown to reject misactivated homocysteine rapidly by the pre-transfer route. A novel feature of this reaction is that homocysteine thiolactone is formed by the facile cyclisation of the homocysteinyl adenylate. Valyl-tRNA synthetases, on the other hand, reject the more readily activated non-cognate amino acids by primarily the post-transfer route. The features governing the choice of pathway are discussed.
منابع مشابه
Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase
To prevent potential errors in protein synthesis, some aminoacyl-transfer RNA (tRNA) synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). Class Ia leucyl-tRNA synthetase (LeuRS) may misactivate various natural and non-protein amino acids and then mischarge tRNA(Leu). It is known that the fidelity o...
متن کاملAminoacylation and translational quality control strategy employed by leucyl-tRNA synthetase from a human pathogen with genetic code ambiguity
Aminoacyl-tRNA synthetases should ensure high accuracy in tRNA aminoacylation. However, the absence of significant structural differences between amino acids always poses a direct challenge for some aminoacyl-tRNA synthetases, such as leucyl-tRNA synthetase (LeuRS), which require editing function to remove mis-activated amino acids. In the cytoplasm of the human pathogen Candida albicans, the C...
متن کاملSelection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code
Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms are not evolutionarily conserved, and their physiological significance remains unclear. To address ...
متن کامل1 PARTITIONING OF tRNA - DEPENDENT EDITING BETWEEN PRE - AND POST - TRANSFER PATHWAYS IN CLASS I AMINOACYL - tRNA SYNTHETASES
Hydrolytic editing activities are present in aminoacyl-tRNA synthetases possessing reduced amino acid discrimination in the synthetic reactions. Post-transfer hydrolysis of misacylated tRNA in class I editing enzymes occurs in a spatially separate domain inserted into the catalytic Rossmann fold, but the location and mechanisms of pre-transfer hydrolysis of misactivated amino acids have been un...
متن کاملRole of tRNA amino acid-accepting end in aminoacylation and its quality control
Aminoacyl-tRNA synthetases (aaRSs) are remarkable enzymes that are in charge of the accurate recognition and ligation of amino acids and tRNA molecules. The greatest difficulty in accurate aminoacylation appears to be in discriminating between highly similar amino acids. To reduce mischarging of tRNAs by non-cognate amino acids, aaRSs have evolved an editing activity in a second active site to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 9 13 شماره
صفحات -
تاریخ انتشار 1981